Identifiability: A Fundamental Problem of Student Modeling

نویسندگان

  • Joseph E. Beck
  • Kai-min Chang
چکیده

In this paper we show how model identifiability is an issue for student modeling: observed student performance corresponds to an infinite family of possible model parameter estimates, all of which make identical predictions about student performance. However, these parameter estimates make different claims, some of which are clearly incorrect, about the student’s unobservable internal knowledge. We propose methods for evaluating these models to find ones that are more plausible. Specifically, we present an approach using Dirichlet priors to bias model search that results in a statistically reliable improvement in predictive accuracy (AUC of 0.620 ± 0.002 vs. 0.614 ± 0.002). Furthermore, the parameters associated with this model provide more plausible estimates of student learning, and better track with known properties of students’ background knowledge. The main conclusion is that prior beliefs are necessary to bias the student modeling search, and even large quantities of performance data alone are insufficient to properly estimate the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing

Modeling students’ knowledge is a fundamental part of intelligent tutoring systems. One of the most popular methods for estimating students’ knowledge is Corbett and Anderson’s [6] Bayesian Knowledge Tracing model. The model uses four parameters per skill, fit using student performance data, to relate performance to learning. Beck [1] showed that existing methods for determining these parameter...

متن کامل

Identifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions

This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...

متن کامل

Individual heterogeneity and identifiability in capture–recapture models

Individual heterogeneity and identifiability in capture–recapture models.— Individual heterogeneity in detection probabilities is a far more serious problem for capture–recapture modeling than has previously been recognized. In this note, I illustrate that population size is not an identifiable parameter under the general closed population mark–recapture model Mh. The problem of identifiability...

متن کامل

GenSSI: a software toolbox for structural identifiability analysis of biological models

SUMMARY Mathematical modeling has a key role in systems biology. Model building is often regarded as an iterative loop involving several tasks, among which the estimation of unknown parameters of the model from a certain set of experimental data is of central importance. This problem of parameter estimation has many possible pitfalls, and modelers should be very careful to avoid them. Many of s...

متن کامل

Fundamental Limits of Blind Deconvolution Part II: Sparsity-Ambiguity Trade-offs

Blind deconvolution is an ubiquitous non-linear inverse problem in applications like wireless communications and image processing. This problem is generally ill-posed since signal identifiability is a key concern, and there have been efforts to use sparse models for regularizing blind deconvolution to promote signal identifiability. Part I of this two-part paper establishes a measure theoretica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007